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Abstract 

Background:  Recent studies have provided insights into the persistence and succession of microbes aboard the 
International Space Station (ISS), notably the dominance of Klebsiella pneumoniae. However, the interactions between 
the various microbes aboard the ISS and how they shape the microbiome remain to be clearly understood. In this 
study, we apply a computational approach to predict possible metabolic interactions in the ISS microbiome and shed 
further light on its organization.

Results:  Through a combination of a systems-based graph-theoretical approach, and a constraint-based community 
metabolic modeling approach, we demonstrated several key interactions in the ISS microbiome. These comple-
mentary approaches provided insights into the metabolic interactions and dependencies present amongst various 
microbes in a community, highlighting key interactions and keystone species. Our results showed that the presence 
of K. pneumoniae is beneficial to many other microorganisms it coexists with, notably those from the Pantoea genus. 
Species belonging to the Enterobacteriaceae family were often found to be the most beneficial for the survival of 
other microorganisms in the ISS microbiome. However, K. pneumoniae was found to exhibit parasitic and amensalistic 
interactions with Aspergillus and Penicillium species, respectively. To prove this metabolic prediction, K. pneumoniae 
and Aspergillus fumigatus were co-cultured under normal and simulated microgravity, where K. pneumoniae cells 
showed parasitic characteristics to the fungus. The electron micrography revealed that the presence of K. pneumoniae 
compromised the morphology of fungal conidia and degenerated its biofilm-forming structures.

Conclusion:  Our study underscores the importance of K. pneumoniae in the ISS, and its potential positive and nega-
tive interactions with other microbes, including potential pathogens. This integrated modeling approach, combined 
with experiments, demonstrates the potential for understanding the organization of other such microbiomes, unrav-
elling key organisms and their interdependencies.

Keywords:  Microbial communities, Space microbiome, Community modeling, Network biology, Metabolic networks

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Microorganisms are ubiquitous and exist in diverse com-
munities around us. They form complex dynamic assem-
blages in every ecosystem, and their interactions shape 
the biotic and abiotic environments [1–3]. Beyond natu-
ral environments such as the soil or the ocean, micro-
organisms abound in all human habitats, where they 
directly impact human health [4]. The human-made 
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International Space Station (ISS) is a unique and con-
trolled system to study the interplay between the human 
microbiome and the microbiome of their habitats. The 
ISS is a hermetically sealed closed system, yet it harbors 
many microorganisms that survive extreme environ-
mental conditions such as microgravity, radiation and 
elevated CO2 levels [5–8]. Recent studies have demon-
strated the unique link between crew member micro-
biomes and surface microbiomes on the ISS [9]. These 
microorganisms might have been brought into the ISS via 
routine payloads and astronauts [9].

Several studies have focused on microbial isolation [10] 
and molecular microbial community analyses of the ISS 
microbiome, through experiments performed on vac-
uum filter debris [11], high-efficiency particle arrestance 
(HEPA) filters [12, 13], the ISS environmental surfaces [8, 
14] and astronauts’ microbiome [9]. A recent report using 
a shotgun metagenomic sequencing approach on intact 
cells of the ISS environmental microbiome revealed the 
succession and persistence of certain microbial popula-
tions on the ISS environmental surfaces [15]. The study 
posited a dominant, viable presence of Biosafety Level 
– 2 (BSL-2) pathogens such as Klebsiella pneumoniae, 
Staphylococcus aureus, Enterococcus faecalis and Salmo-
nella enterica (Figure S1).

K. pneumoniae is well-known for its ability to cause 
pneumonia and other nosocomial infections and is 
largely studied for its known resistance to a wide spec-
trum of antibiotics, such as carbapenems, and its hyper-
virulence [16–20]. The present study is motivated by the 
evidence presented about the dominance of K. pneumo-
niae at multiple locations of the ISS, its succession over 
time [15], and the potential clinical implications it could 
have on the health of the astronauts inhabiting the ISS.

Metabolic interactions are a key driver in shaping 
microbial communities [21]. Studying these meta-
bolic interactions can be instrumental in understand-
ing the interplay between various microorganisms in 
diverse communities [22–24]. Genome-scale metabolic 
modeling is a powerful tool to study and understand 
microbial metabolism [25]. These modeling approaches 
capture in detail, the known metabolic reactions hap-
pening in a microorganism, along with the enzymes 
that catalyze them, representing them in a mathemati-
cal form amenable to simulations [26]. Beyond sin-
gle microorganisms, metabolic modeling can also be 
extended to study microbial communities; many para-
digms have been developed, including those based 
on graph theory, and constraint-based modeling, as 
reviewed elsewhere [27, 28].

In this study, we leverage the metagenome datasets that 
have captured the microbial composition of the ISS sur-
faces [15] to specifically predict how various species in 

these communities can influence one another’s metabo-
lism, leading to mutually beneficial interactions and sta-
ble microbiomes. In particular, we focus our study on K. 
pneumoniae and its coexisting species, to elucidate the 
possible underlying metabolic interactions that drive the 
structure of these communities. Through a combination 
of a systems-based graph-theoretical approach, Met-
Quest [29, 30], and a constraint-based community mod-
eling approach, SteadyCom [31], we illustrate the central 
role of metabolic interactions and dependencies in shap-
ing the ISS microbiome.

Methodology
In this study, a two-pronged computational approach 
was adopted to investigate and decipher the prevailing 
microbial interactions in the ISS. In the first graph-based 
approach [29], bipartite graphs were created to represent 
the metabolic networks of microorganisms taken indi-
vidually, as well as when in pairs or larger communities. 
The metabolic networks underlying the organisms  were 
represented as bipartite graphs, where two groups of 
nodes represent metabolites and reactions, and directed 
edges connect substrates to reactions and reactions to 
products. These networks were used to identify possi-
ble metabolic dependencies between different microor-
ganisms. In the second constraint-based approach [31], 
microbial growth rates were predicted, individually and 
in communities, to gauge the nature of their interactions, 
as we describe in the following sections. Figure 1 shows 
a broad overview of the approach of this study, outlining 
the steps beginning with the identification of microor-
ganisms coexisting with K. pneumoniae to various meta-
bolic network analyses.

Data
Microbial abundances associated with samples taken 
across three flights at eight ISS locations were previously 
measured using metagenomic sequencing [15]. Among 
eight locations, only seven locations yielded measurable 
metagenomics data. In the present study, the data were 
further pruned such that only shotgun metagenome 
sequences associated with propidium monoazide (PMA)-
treated samples that recorded a presence of K. pneumo-
niae were retained. The PMA-treatment removed naked 
DNA and dead cells, thus retaining sequences associated 
with viable and intact cells only [32]. Further, only micro-
organisms that were found to coexist with K. pneumoniae 
with >1% relative abundance at the location were used in 
this study.

For this study, the available whole-genome sequences 
(WGS) of microorganisms from the ISS, which were 
compatible with KBase [33] along with reference 
genomes for the relevant microorganisms taken from the 
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Fig. 1  Overview of the analysis pipeline. Beginning with identifying a list of microorganisms that coexist with K. pneumoniae, the genome-scale 
metabolic models were built using KBase and the extent of benefit derived by each individual microorganism in different scenarios was computed 
using MetQuest and the Metabolic Support Index (MSI) as a metric. SteadyCom, a constraint-based approach, was also employed here to determine 
the effect of a microorganism on the growth of another and to further classify the nature of their interactions into their respective types based on 
the observed change in growth rates
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NCBI database, were collected. The RefSeq and GenBank 
accession identification numbers, along with the under-
lying reasoning for the choice of these sequences, are 
provided in Supplementary Table S1. Although the rela-
tive abundance of Pantoea sp. PSNIH2 was >1% in some 
of the locations considered in this study, as its reference 
genome sequence was removed from the NCBI database, 
at the time of this study,  this microorganism therefore 
had to be excluded. Metabolic models were constructed 
for the 52 microorganisms using ModelSEED [34]. The 
detailed process is elaborated in Supplementary Meth-
ods M1. The details of the reconstructions, templates and 
information about reaction counts are specified in Sup-
plementary Table S2.

Predicting metabolic dependencies in the community
To investigate the microbial interactions underlying the 
chosen microbial communities of the ISS, MetQuest 
[29], a graph-theoretic algorithm was first employed. 
Through a novel dynamic-programming-based enu-
meration, MetQuest assembles reactions into path-
ways of a specified size producing a given target from 
a specified set of source molecules (‘seed’). Through 
a guided breadth-first search, MetQuest can identify 
all the metabolites that can be traversed from a set of 
seed metabolites. This functionality was exploited in 
this study as previously published [30]. Using this algo-
rithm, the present study presents a top-down view of 
metabolic dependencies in these communities, begin-
ning with predicting the most supportive families, then 
the most dependent genera, and finally the beneficial 
and dependent microorganisms by looking at pairs of 
potentially interacting microorganisms. In each sce-
nario, the extent of benefit derived was calculated 
using a measure known as the Metabolic Support Index 
(MSI) [30]. This was also extended to measure the pos-
sible support an organism derives from (or provides to) 
a community where it is present, denoted Community 
Support Index (CSI).

The composition of the seed metabolites was chosen 
so as to incorporate the co-factors and coenzymes that 
would be present in the environment and required by 
a living cell, and capture the minimal nutrient content 
offered by the ISS. The minimal medium of each meta-
bolic model was identified by minimizing the components 
required to achieve a minimum growth rate of 0.1 h-1,  
using built-in functions in COBRApy [35], namely  
minimal_medium  from the cobra.medium module. This 
approach was adopted on the premise that each microor-
ganism is capable of individual growth. For each location 
at each flight, the minimal medium sets corresponding to 
each constituent microorganism were pooled together to 

form a consolidated medium. Additionally, a base set of 
co-factors and coenzymes were added to each of these 
sets. The same medium was used for both the graph-
based and constraint-based analyses. Supplementary 
Table S3 contains the list of all such metabolites.

Pairwise interactions
For a pair of microorganisms, A and B, MSI is calculated 
as follows:

Here, nstuck, A ∣ A ∪ B refers to the number of stuck reac-
tions in A, when present in the community alongside B, 
while nstuck, A ∣ A refers to the number of stuck reactions 
in A, when it is present in isolation. Individual bipartite 
graphs were constructed (n = 52), and the stuck reac-
tions were first determined for every individual microor-
ganism in the dataset, using the MetQuest algorithm as 
described above, which provided insight into the intrinsic 
metabolic capabilities of each individual microorganism. 
Following this, for every pair of coexisting microorgan-
isms that may potentially interact, bipartite graphs were 
constructed for the two-member community (n = 426), 
and the stuck reactions were determined for each con-
stituent member of each community, in a flight-location-
specific approach (n = 761), to derive the effect of its 
partner by virtue of being in this community, through the 
calculation of the MSI.

Building further on these interactions, as captured 
by the MSIs between various microbial pairs, microbial 
association networks were constructed and visualized 
using Cytoscape [36]. These networks capture the extent 
to which a microorganism is able to relieve the stuck 
reactions of another through metabolic exchanges.

Higher‑order interactions
The enhancement of metabolic capabilities rendered by a 
microorganism(s) by virtue of it thriving in a community 
was derived from the MSI, here referred to as the com-
munity support index (CSI). The CSI, denoted CSI

A→Ã
 

throughout this manuscript, was calculated as the frac-
tion of reactions relieved in the rest of the community 
over the reactions ‘stuck’ in the same in the presence of 
the microorganism. For a community X and an inhabit-
ant microorganism, or family of microorganisms, A, the 
effect of A on the rest of the community Ã = (X − A), 
where Ã denotes the rest of the community X devoid of 
microorganism/family A, is computed as follows:

(1)MSI(A|A ∪ B) = 1−
nstuck ,A|A∪B

nstuck ,A|A

(2)CSI Ã|X = 1−
n
stuck ,Ã|X

n
stuck ,Ã|Ã
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Here, n
stuck ,Ã|Ã

 refers to the number of stuck reactions 
in the community X without microorganism A for the 
given set of seed metabolites. A reaction is considered 
stuck when it does not have the necessary precursors for 
the reaction to happen. In other words, these are reac-
tions that cannot occur under the present conditions, 
without extraneous help in terms of other metabolites 
from other microorganism(s), or the environment itself. 
Similarly, n

stuck ,Ã|X
 refers to the number of reactions in Ã 

that remain stuck, even in the presence of A. We consider 
only internal reactions (as against transport or extracel-
lular reactions) while computing these numbers.

For each of the sites considered in this study, bipar-
tite graphs were first constructed (n = 129) for com-
munities devoid of one constituent microorganism, 
and their respective stuck reactions were determined 
in the appropriate environment (i.e., the seed metabo-
lites described above and listed in Supplementary Table 
S3). This approach provided insight into the intrinsic 
metabolic capabilities of each community devoid of that 
microorganism. Following this, a total 11 bipartite graphs 
were constructed, taking into consideration all inhabit-
ant microorganisms of a particular site. The stuck reac-
tions were determined for each community to gather the 
effect of the interactions by calculating the CSI

A→Ã
 . A 

CSI
A→Ã

 of unity indicates that A completely supports Ã 
and relieves all its stuck reactions, whereas a value of zero 
indicates that A has no effect on Ã.

Microorganisms could potentially be metabolically 
similar, and therefore redundant to the community, offer-
ing little or no metabolic support individually. Therefore, 
microbial interactions were also studied by grouping 
them by their respective families (n = 7), at each loca-
tion. The metabolic support provided by groups of 
microorganisms (e.g., a family) can be readily computed 
by replacing A in X − A with the set of microorganisms 
comprising the family in Eq. (1).

It is also possible to estimate the community benefit, 
in terms of enhancement of metabolic capabilities, an 
individual microorganism might receive by virtue of it 
thriving in a community. Here, the CSI, denoted CSI

Ã→A
 , 

was calculated as the fraction of reactions relieved in the 
microorganism when in a community assemblage over 
the reactions stuck in the individual. For a community X 
and an inhabitant microorganism A, the effect of the rest 
of the community Ã on A is computed as follows:

The CSI
Ã→A

 thus captures the ‘benefit’ a microorgan-
ism or a group of microorganisms receives from another 
microorganism or group, by virtue of its stuck reactions 
being relieved via metabolic exchanges with its coexisting 

(3)CSI(A|X) = 1−
nstuck ,A|X

nstuck ,A|A

microorganisms. For clarity, all CSIs and MSIs have been 
represented as percentages.

Determining the nature of interactions
Microbial interactions have major relevance in build-
ing and shaping the community. Based on the effects a 
microorganism has on another, the interactions can be 
categorized into six types, namely amensalism, commen-
salism, competition, neutralism, mutualism and parasit-
ism [37]. The present study reports a constraint-based 
community modeling study using the algorithm, Steady-
Com [31].

SteadyCom [31] was employed to determine the bio-
mass production rates of all microorganisms that are a 
part of a community under  steady state. The seed metab-
olites described earlier, in the network-based approach 
were used here as the medium (see Supplementary 
Table S3). The lower bounds of the exchange reactions 
for the uptake of these metabolites were constrained to  
−10 mmol/gDW-h [38]. Joint models were then created 
for all pairs of microorganisms that can potentially inter-
act by virtue of being at the location at that point in time. 
These joint models were optimized using SteadyCom 
[31] to find the individual biomass rates when existing as 
a community.

The growth rate observed for each microorganism in 
community was compared with that observed for the 
individual microorganism. A 10% or higher increase 
or decrease in growth rate, when in a community, was 
taken to be a significant effect [39]. The interactions were 
accordingly classified into the types listed above. The 
equation defined below was used to determine the effect 
of microorganism B on A, in a two-membered commu-
nity constituting A and B.

 where vbio, AB is the community biomass production rate 
of AB and vbio, A is the biomass production rate of A.

Depending on the value (positive [+], negative [−], or 
neutral [0]) obtained, the interaction was classified as 
mutualism (the effect of B on A, and the effect of A on 
B, both being positive, i.e., +, +), neutralism (effects on 
each other being not significant, denoted 0,0), competi-
tion (a negative effect on each other, denoted by −,−), 
amensalism (−,0 and 0,−), commensalism (0,+ and +,0), 
and parasitism (−,+ and +,−).

K. pneumoniae and A. fumigatus interactions
Overnight grown cultures of K. pneumoniae (106 cells per 100 
μL) and purified conidia of A. fumigatus (106 per 100 μL) were 
either mixed or grown alone in a 10-mL sterile potato 
extract (0.4%; w/v) dextrose (2%; w/v) liquid medium and 

(4)Effect of B on A =
vbio,AB − vbio,A

vbio,A
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grown under normal and simulated microgravity condi-
tions using high aspect ratio vessel (HARV; Synthecon 
inc., Houston, TX) culturing units [40]. The autoclav-
able HARVs provided oxygenation to the culture media 
via their large-diameter gas permeable membrane. The 
HARVs with microbes were incubated at 30 °C; 150 rpm, 
for 48 h. HARVs were run in parallel in both horizontal 
rotation (normal gravity control) and vertical rotation 
(simulated microgravity) orientation during growth. 
After growth, the bacterial and fungal cells were harvested, 
then fixed by incubating the cells in 2.5% glutaraldehyde 
in 0.1M Sodium Cacodylate (Sigma) buffer at 4 °C for  
1 h for scanning electron microscopy (SEM) study.  
Samples were then washed in 0.1M sodium cacodylate 
buffer three times. Fixed cells were then dehydrated in 
isopropyl alcohol (IPA, Sigma), using a stepped series 
of increasing concentrations (50%, 70%, 80%, 90%, 95 
to 100%). Each step consisted of a 10-min incubation at 
4 °C, followed by 3 x replacements with 100% IPA, and 
finally stored at 4 °C. Samples were critically point dried 

in an Automegasamdri 915B critical point dryer (Tousi-
mis, Rockville, MD). Samples were attached in SEM stubs 
with carbon tape (Ted Pella Inc., Redding, CA), followed 
by carbon coating with a Leica EM ACE600 Carbon 
Evaporator (Leica, Wetzlar, Germany) to a thickness of 
~12nm. SEM analysis was performed with an FEI Quanta 
200F (Thermo Fisher, Waltham, MA).

Results
Data acquisition and genome‑scale metabolic network 
reconstruction
According to the data published by Singh et al. 2018 [15], 
among the PMA-treated samples, reads of K. pneumo-
niae were detected in a total of 11 sites—locations #1, #2, 
and #5 in Flight 1; location #5 in Flight 2; and locations 
#1, #2, #3, #4, #5, #7, and #8 in Flight 3 (Fig. 2). The rela-
tive abundances of microorganisms were calculated at 
the respective sites, and upon further pruning of this data 
to include solely those with >1% abundance, a total of 
50 different strains of microorganisms that coexist with 

Fig. 2  Locations with a recorded viable presence of K. pneumoniae. The figure describes the locations of the ISS at which K. pneumoniae was 
detected from the respective PMA-treated samples, and also features its coexisting microorganisms that inhabit the location at >1% relative 
abundance. The networks have been drawn on Cytoscape for all three time points of the study by Singh et al. 2018: Flight 1 (F1), Flight 2 (F2) and 
Flight 3 (F3). The octagonal location nodes have been color coded according to the ISS Node they belong to. Locations #1, #2 and #3 belong to 
Node 3; locations #4 and #5 to Node 1; location #6 (not shown here) to PMM and location #7 to the US Laboratory. The microbial nodes have been 
color-coded such that those existing at more than one location with K. pneumoniae are shown in grey, implying that a microorganism found in a 
large number of locations (such as K. pneumoniae in F3) will be filled with a darker shade of grey
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K. pneumoniae at varied locations and time points were 
chosen for further study.

Analysis of the diversity of these microorganisms at 
each of these locations over time (Fig. 2) reveals the fol-
lowing trends. In Flight 1, among the three locations that 
were colonized by K. pneumoniae, there was an observed 
dominance of fungi in location #1, Enterobacteriaceae 
in location #3, and Erwiniaceae in location #5. In Flight 
2, K. pneumoniae was documented to be present only in 
location #5, coexisting with extant and dominant Erwini-
aceae, a member from the Enterobacteriaceae family 
and another from the Paenibacilleae family. In Flight 3 
however, K. pneumoniae spread across the ISS, inhab-
iting nearly all sampled locations. Additionally, many 
more members of Erwiniaceae, specifically the Pantoea 
genus, emerged into view at a majority of these loca-
tions, as shown in Fig. 2. Further, with the exception of 
A. niger and Rhodoturula sp. strain JG-1b, all fungi con-
sidered in the dataset appear to be concentrated in loca-
tion #3. Location #3 is also dominated by a large number 
of Staphylococcaceae. The list of microorganisms, along 
with their relative abundances at each location in each 
flight, is provided in Supplementary Table S4.

Enterobacteriaceae are pivotal contributors to community 
metabolism
Through a ‘leave-one-out’ approach, microorganisms 
were knocked out one at a time from the community 
to estimate the extent of benefit provided by that sin-
gle microorganism to the remaining coexisting micro-
organisms. From the analysis, it was evident that some 
microorganisms do have an influence on the metabolic 
capabilities on the rest of the community, albeit low in 
most cases. Notable among these, were P. rubens at loca-
tion #3 during Flight 3 ( CSI

A→Ã
 = 1.15%), and at loca-

tions #2 ( CSI
A→Ã

 = 0.40%) and #5 ( CSI
A→Ã

 = 0.36%) 
during Flight 1, and K. oxytoca at location #2 in Flight 1 
( CSI

A→Ã
 = 0.49%) (Supplementary Table S5 and Supple-

mentary Figure S2).
These low values of CSI

A→Ã
 are expected, given the 

possible high metabolic overlap between members 
within a community, thereby rendering individual organ-
isms less important to a community. To examine this, we 
grouped organisms based on their phylogenetic affilia-
tion, and removed these groups, one at a time, from the 
community, to study the importance of a given family to 
the community.

Overall, with respect to the locations considered in 
this study, the Enterobacteriaceae family comprising spe-
cies of the Klebsiella, Escherichia, Salmonella, Shigella, 
and Enterobacter genera, was often found to be the most 
beneficial of all clusters, with the highest CSI

A→Ã
 s in six 

out of a total eleven communities under study (Fig. 3 and 

Supplementary Table S6), five of which were in Flight 3. 
With regards to the remaining five communities, Trichoc-
omaceae have the highest CSI

A→Ã
 s at locations #2 and #5 

during Flight 1, Erwiniaceae have the highest CSI
A→Ã

 s at 
location #1 in Flight 3 and at location #5 during Flight 2, 
and Paenibacillaceae has the highest CSI

A→Ã
 at location 

#2 in Flight 3. Here, A refers to the family of microorgan-
isms that provides metabolic support.

Pantoea species thrive in the support of the microbiome
The CSI

Ã→A
 of an individual microorganism in the pres-

ence of its coexisting microorganisms was calculated to 
gain insight into the combined effect of the community 
on an individual. The CSI

Ã→A
values of Pantoea were 

found to be among the highest (Supplementary Table S7 
and Fig. 4), indicating that these species are benefitted to 
a comparatively greater extent from the remaining mem-
bers of the community. Across all locations and flights in 
the dataset, the CSI

Ã→A
 values  of these species ranged 

between 0 and 6.52%, wherein the values at the lower end 
were predominantly observed in those Pantoea species 
found at location #1 in Flight 3. P. vagans was found to 
exhibit the highest dependency amongst all the Pantoea, 
at location #5 in Flight 2 (Fig. 4).

With the exception of E. coli and S. enterica, the 
CSI

Ã→A
values of other Enterobacteriaceae fell in the 

range of 0–0.91%, suggesting an overall lower depend-
ence of members of the Enterobacteriaceae on their coex-
isting microorganisms (Fig. 4). K. pneumoniae showed no 
dependency ( CSI

Ã→A
 = 0%) in six out of the 11 locations 

that they were found. In addition, S. enterica exhibited 
the highest community dependence amongst all microor-
ganisms in consideration, with a CSI

Ã→A
 = 8.79% at loca-

tion #3 during Flight 3, and along with E. coli, showed 
high CSI

Ã→A
 values (Fig. 4).

Analysis across the three flights at location #5 reveals 
that four out of five organisms present at all instances 
are benefitted to a lesser extent in Flight 1 compared to 
Flights 2 and 3 (Fig. 4 and Supplementary Table S7).

K. pneumoniae are beneficial to its coexisting 
microorganisms
In every community, microorganisms exchange metab-
olites, influencing one another’s growth and sur-
vival. We performed a pairwise analysis of a total of 
761 flight-location-specific communities to identify 
how every pair of microorganisms interacts with one 
another, at a given location, during a given flight, and 
through various metabolic exchanges support each 
other.

In communities with K. pneumoniae and a member 
outside of the Enterobacteriaceae, the MSI values in the 
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presence of K. pneumoniae were found to fall in the range 
of 0–6.46%. Most Pantoea species were found to be highly 
dependent on K. pneumoniae, with MSIs at the higher 
end (4.41–6.46%) of the spectrum (Supplementary Table 
S8). With the exception of E. coli and S. enterica, the MSI 
values of all other Enterobacteriaceae members were 
found to be 0% in the presence of K. pneumoniae (Sup-
plementary Figures S3 and S4). Out of 118 pairs, K. pneu-
moniae was found to have a non-zero MSI value in only 
nine such pairs. In these nine pairs, the other interacting 
member belonged to a species of the Penicillium genus.

Since K. pneumoniae was present across the three 
flights only at location #5, the corresponding microbial 
association networks were constructed to gain insights 
into microbial interaction patterns over time (Fig.  5). 
In Flight 1, fungi such as P. rubens and Rhodotorula sp. 
JG-1b are prevalent and shown to decline in abundance 
over time (Flight 2 and Flight 3). On the contrary, mem-
bers of the Panteoa genus were observed to dominate this 
location over time, with many more Pantoea species sur-
facing. In agreement with earlier results discussed, many 
species of the Enterobacteriaceae family shown here such 
as K. pneumoniae and E. cloacae, were beneficial to mem-
bers of the Erwiniacea family to a great extent (Fig. 5).

Constraint‑based modeling suggests the domination 
of amensalistic and parasitic interactions
The graph-theoretic approaches described earlier do 
not explicitly account for the growth of microorganisms 

in the presence of one another or their rates, although a 
higher MSI does point towards a possible higher biomass 
in the community [30]. Complementary to the above 
approaches, constraint-based modeling approaches 
such as SteadyCom [31] can shed light on the ability of 
microorganisms to grow in a steady-state. Based on these 
predicted growth rates, it is also possible to classify the 
nature of the interaction between various pairs of micro-
organisms [37].

A total of 761 flight-location-specific pairs of microor-
ganisms were studied. Among these, 458 pairs exhibited 
amensalism and 166 were predicted to be parasitism. Of 
the remaining, 48 were commensal, 36 were competitive, 
34 were mutualistic and 19 were neutral.

Looking closely into the nature of interactions of K. 
pneumoniae and its coexisting microorganisms, in 118 
such pairs, 72 were predicted to be amensal, 14 com-
mensal, 13 involved in competition, 10 were parasitic 
interactions, seven were mutual and two were neutral. 
In communities with the Enterobacter species, K. pneu-
moniae was involved in amensalistic interactions as 
observed across all such flight-location pairs. While in 
the interactions with E. cancerogenus and Enterobacter 
sp. strain NFIX59, the growth rate of K. pneumoniae was 
predicted to decrease, in the interactions with all other 
Enterobacter species, there was no significant effect on 
the predicted growth rate of K. pneumoniae.

In eight out of nine flight-location-specific communi-
ties of K. pneumoniae with E. coli, E. coli was predicted 

Fig. 3  Metabolic support provided by each family to the remaining community. The values on the tiles denote the Community Support Index 
( CSI

A→Ã
 ) calculated in the presence of the family. The values are represented as percentages. The X-axis denotes the families present in the dataset, 

and the Y-axis denotes the respective locations. The heatmap has been facetted to indicate the three timepoints, i.e., Flights
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to have no significant change in growth rate while that of 
K. pneumoniae was predicted to decrease, suggesting an 
amensalistic interaction. Further, in Flight 3, at location 
#3, E. coli was predicted to be parasitic towards K. pneu-
moniae. In the interactions with S. enterica, in four out of 
the six locations, the growth rate of K. pneumoniae was 
decreased in its presence, whereas that of S. enterica was 
increased, resulting in a parasitic interaction. This is in 
accordance with the previously observed high MSI values 
at locations #3, #5, #7, and #8 during Flight 3. In the other 
cases during Flight 1 at location #2 and Flight 3 at loca-
tion #1, the interaction was predicted to be amensalistic, 
wherein the growth rate of K. pneumoniae was reduced.

With other Klebsiella species, the interactions were 
predicted to be predominantly amensalistic, with the 
growth rate of K. pneumoniae reduced, except in the 
interaction with Klebsiella sp. strain MS 92-3, where the 
reverse was observed. K. pneumoniae was predicted to be 
parasitic towards K. aerogenes strain IIIF7SW-P1.

The interactions with Pantoea species, such as P. 
agglomerans, P. conspicua, Pantoea sp. strain 3.5.1, Pan-
toea sp. strain A4, Pantoea sp. strain At-9b, Pantoea sp. 
strain FF5, Pantoea sp. strain NGS-ED-1003, Pantoea sp. 
strain OXWO6B1 and P. vagans, were amensalistic with a 
decreased growth rate of the Pantoea species, in all cases 
except in Flight 3 at location #1, where the interactions 
were predicted to be competitive. Interactions with P. 
ananatis however were found to be commensal, with an 
observed increased growth rate. P. dispersa and Pantoea 
sp. strain IMH were found to compete with K. pneumo-
niae at their coexisting locations (Fig. 6 and Supplemen-
tary Table S9).

Staphylococcus sp. in Flight 3 at location #2 were found 
to be mutualistic with K. pneumoniae strain F3-2P(2*), 
with the exception of S. saprophyticus that was observed 
to be involved in commensalism. During Flight 3, loca-
tion #3 however, this interaction of S. saprophyti-
cus with K. pneumoniae was predicted as mutualistic 

Fig. 4  Extent of metabolic benefit derived by an individual microorganism from its coexisting microorganisms. The heatmap depicts the range 
of Community Support Indices ( CSI

Ã→A
 ) that indicate the metabolic support rendered to an individual by virtue of it being in that location. The 

values are represented as percentages. On the X-axis is the list of microorganisms in consideration, and on the Y-axis is the flight number and the 
concerned location number. A darker red tile indicates the microorganism is benefitted to a greater extent in that flight and location
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(Supplementary Table S9). This observed change in the 
nature of interactions may perhaps be attributed to the 
differences in the simulated medium compositions at the 
different locations.

The interactions of K. pneumoniae with A. niger were 
observed to be parasitic, with an observed decreased 
growth rate of A. niger and an increased growth rate 
of K. pneumoniae. With Penicillium species, K. pneu-
moniae had an amensalistic effect on them, resulting 
in their decreased growth rates. The interactions with 
Rhodotorula sp. strain JG-1b were found to depend on 
the flight and location in which they coexisted. Dur-
ing Flight 1, at location #1, an increased growth rate 

was observed in Rhodotorula sp. strain JG-1b, whereas 
there was no significant effect on that of K. pneumo-
niae, thereby suggesting a commensal interaction. In 
locations #2 and #5, however, a neutral interaction was 
predicted, with no significant change in growth rates of 
either species. In Flight 3, K. pneumoniae was observed 
to be amensalistic towards Rhodotorula sp. strain JG-1b 
at location #1 and commensal at location #2. K. pneu-
moniae increased the growth rate of R. toruloides in 
Flight 1 at location #1 (Fig. 6 and Supplementary Table 
S9). Details regarding the nature of interactions of other 
microorganisms in the community have been delineated 
in Supplementary Table S9.

Fig. 5  Microbial association networks for pairs of microorganisms inhabiting location 5, across the three flights. Cytoscape was used to construct 
and visualize these networks across three flights: Flight 1 (F1), Flight 2 (F2) and Flight 3 (F3). The nodes are labelled with microorganisms that 
inhabit the site at that respective time point. The directed edges are directed from the metabolically supportive microorganism to the metabolically 
dependent microorganism. The color of these directed edges are mapped to the Metabolic Support Indices (MSI), represented as percentages, such 
that the gradient from light blue to dark blue represents an increasing MSI
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Detrimental effect of K. pneumoniae on Aspergillus 
fumigatus
The parasitic interactions of K. pneumoniae on A. niger 
were observed using various microscopic techniques 
(data not shown). Since A. niger is not a pathogenic bac-
terium, we extensively characterized an ISS isolated A. 
fumigatus, a BSL-2 bacterium, to understand the detri-
mental effect of K. pneumoniae. The scanning electron 
micrographs confirmed the parasitic effect of K. pneu-
moniae over A. fumigatus (Fig.  7). Under normal grav-
ity conditions, A. fumigatus was found to be healthy 
where conidiophore holding vesicle with healthy metulae 
and phialides harboring conidia were noticed (Fig.  7A), 
whereas simulated microgravity affected the phialides 
structure (Fig.  7C) and subsequently conidia-forming 
cells were not clearly visible. When K. pneumoniae was 
co-cultured with the fungus, under normal gravity condi-
tions, the bacterial cells (artificially colored in red) were 
shown to destroy the conidia-forming cells and also par-
tially degraded metulae and phialides (Fig. 7B).

Furthermore, when K. pneumoniae cells were grown 
with the fungus and incubated in simulated microgravity 
conditions, bacterial cells destroyed the fungal structure 
where only vesicle was seen along with the conidia and 
phialides, additionally the metulae were disformed and the 
hyphae (Fig.  7D) appeared to be disfigured compared to 
those seen in Fig. 7A or B. When co-cultured, the hyphae 
of A. fumigatus appeared to be healthy when grown under 
normal gravity (Fig.  7B) and mostly dead when exposed 
to the simulated microgravity (Fig.  7D). The number of 

conidia were also less and on top of the conidia-forming 
cells the fungal morphological architecture changed. These 
changes were more obvious in microcosm where both 
K. pneumoniae and A. fumigatus were co-cultured and 
exposed to the simulated microgravity (Fig.  7D) than in 
the setup that were not exposed to simulated microgravity 
(Fig. 7B). Interpretation of image data was based on careful 
analysis of multiple images (n = 100), not only on a single 
micrograph of each test condition.

Additional SEM images (n = 4 to 6) per condition 
are provided in Supplementary Figure S5A to S5D. The 
mixed nature of the microorganisms (bacteria/fungi), 
the high magnification necessary to resolve the smaller-
sized bacterium (creating narrow field of view) and large 
morphology (mycelium, and conidiophore/conidia) of 
the fungus combined to prevent adequate SEM obser-
vations that would be necessary to reasonably quantify 
the cells. Thus, statistical analysis was not possible using 
the SEM approach. This visualization approach demon-
strates that K. pneumoniae in combination with simu-
lated microgravity negatively influenced the growth of 
the fungi. Both these bacterial and fungal strains were 
isolated from ISS and potential detrimental effect of 
K. pneumoniae as predicted by the metabolic model 
during this study was experimentally demonstrated, 
confirming the degeneration of A. fumigatus morpho-
logical architecture. In addition to these morphological 
modifications, K. pneumoniae also reduced the biofilm 
forming capability of the fungus when grown together 
(Supplementary Figure S6).

Fig. 6  Key interactions with Klebsiella pneumoniae. The network diagrams depict the nature of interactions pertaining to those of A Klebsiella 
pneumoniae with coexisting Pantoea species B Klebsiella pneumoniae with the coexisting fungi. The color and arrowheads of the edge indicate the 
nature of the observed interaction, and the edge labels correspond to the flight-location in which that type of interaction was observed. The nodes 
of K. pneumoniae and K. pneumoniae strain F3-2P(2*) have been increased in size solely for the purpose of clarity
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Discussion
In this study, we used a metabolic perspective to ana-
lyze the ISS microbiome with a focus on K. pneumoniae, 
a BSL-2 human pathogen, and its coexisting microor-
ganisms. In our two-pronged approach, we first used 
a graph-theoretical approach to unravel the metabolic 
interdependencies in the microbiome, and we further 
complemented this with constraint-based analyses, to 
identify the consequences of microbial interactions on 
growth. We begin by looking at higher-order interactions 
in the community and further delve deeper and look at 
pairwise interactions that have been previously shown 
to be major drivers of community dynamics [41]. We 
traverse three taxonomic levels—family, genus and spe-
cies and provide insights into the keystone species of the 
community through metabolic network analyses.

The key results of this study are four-fold. First, among 
the families considered, species belonging to the Entero-
bacteriaceae family were often found to be the most ben-
eficial, among the ISS microbiome. Secondly, Pantoea 
species were predicted to be extensively dependent on 
their coexisting microorganisms. Third, through meta-
bolic network analysis of microorganisms taken pairwise, 
K. pneumoniae was found to be beneficial to many of its 
coexisting microorganisms, especially to those species 
belonging to the Pantoea. Fourth, metabolic interactions in 

the community broadly fell under the categories of amen-
salism and parasitism. The parasitic interaction under nor-
mal and simulated microgravity between K. pneumoniae 
and A. fumigatus was experimentally checked.

Even though <7% of the metagenomic reads of ISS 
environmental surfaces constituted BSL-2 microorgan-
isms, the dominant and persistent human microbial 
pathogens were Pantoea, Klebsiella, Staphylococcus, 
Erwinia and Penicillium [15]. Among the ISS surfaces, 
Zero-G Stowage Rack  (Location #5) had more Pantoea 
reads compared to other locations of all flights. When 
metagenomic reads of all BSL-2 microorganisms were 
compiled, K. pneumoniae was found to be persistent and 
dominant in Zero-G Stowage Rack of all three flights 
(Fig.  2). In general, K. pneumoniae reads were more 
and dominant in all seven locations sampled in Flight 3. 
Unlike in Flight 3, K. pneumoniae reads were retrieved 
sparingly in Flight 1 (Cupola and WHC) and Flight 2 
(Zero-G Stowage Rack). The cleaning reagent used in ISS 
consists of benzalkonium chloride, which might be able 
to eradicate the fungal population; thus fungal succes-
sion was not observed, unlike bacterial members which 
were persistent in the ISS locations examined [42]. It is 
also documented that K. pneumoniae cells were resistant 
to the quaternary ammonium compound concentration 
used as cleaning agents in ISS [43].

Fig. 7  Antagonistic characteristics of K. pneumoniae when co-cultured with A. fumigatus under simulated microgravity. A A. fumigatus grown under 
normal gravity. B Both bacteria and fungus grown under normal gravity. C A. fumigatus grown under simulated gravity. D Both bacteria and fungus 
grown under simulated gravity. K. pneumoniae cells were artificially colored to show their presence on and around fungus culture. These pictures 
are representative of hundreds of SEM images
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On applying graph-theoretical algorithms and survey-
ing the microbiome at multiple levels, we predicted that 
among the families in the dataset, members of the Enter-
obacteriaceae family were perhaps the most beneficial 
to other microorganisms in the community, whereas in 
most cases, members of the families such as Erwiniaceae, 
Staphylococcaceae and Sporidiobolaceae (yeast) offered 
little or no additional metabolic benefit to the commu-
nity. It has been documented that some Rhodotorula 
species produced silver nanoparticles containing antimi-
crobial properties against a wide variety of Gram-positive 
and negative microorganisms [44]. The members of the 
family Sporidiobolaceae (Rhodotorula, pink yeast) were 
isolated from the ISS locations [8], their antagonistic and 
parasitic behavior predicted during this study should be 
tested against opportunistic microbial pathogens to aid 
in the development of appropriate countermeasures. 
Similarly, the amensalism predicted towards Erwiniaceae 
and mutualism of Staphylococcaceae members with K. 
pneumoniae need further study utilizing the ISS strains.

At the genus level, we observed that Pantoea genus 
typically derives the most benefit in the community. On 
looking at the pairwise interactions, we observed that 
amongst other Enterobacteriaceae, K. pneumoniae pro-
vides metabolic support to many of its coexisting species, 
notably those from the Pantoea genus. The members of 
the genus Pantoea were primarily considered as plant 
pathogens, but subsequently, they have been isolated 
from many aquatic and terrestrial environments, includ-
ing ISS [8] as well as in association with insects, animals 
and humans [45–49]. During this study [8], the metagen-
omic sequences of the opportunistic human pathogens 
associated with Pantoea genus were P. agglomerans, 
P. conspicua, P. brenneri, P. ananatis and P. dispersa, 
whereas the plant pathogenic Pantoea species were not 
observed. The competitive metabolomic properties pre-
dicted during this study by K. pneumoniae with Pantoea 
members (Fig.  6A) might be due to the assimilation of 
similar compounds for sustaining their growth. Detailed 
phenotypic metabolic profiles of these microbes are 
needed to confirm the competition and amensalism pre-
dicted in this study.

Finally, from the constraint-based analyses, many amen-
sal and parasitic interactions were noticed. This is cor-
roborated by earlier findings that K. pneumoniae can 
inhibit fungal conidia germination and hyphal growth, 
as well as biofilm formation of Aspergillus species [50]. 
Recent reports documented that K. pneumoniae shifted to 
a pathogenic state, potentially leading to septic infections 
when cooccurred with A. fumigatus in immunocompro-
mised individuals [50]. In addition, this study shows that 
K. pneumoniae cells prevented germination of conidia 
and hyphal development of the fungi. It has been further 

shown that K. pneumoniae bacterial cells induced the fun-
gal cell wall stress response mechanisms and suppressed 
the filamentous growth of fungi [50]. The simple in silico 
metabolic model of this study predicted the antagonistic 
(parasitic) metabolic interaction between K. pneumoniae 
and A. niger (Fig.  6B), which further enabled to validate 
parasitism in  vivo, using the strains isolated from the 
ISS. However, this experimental evidence might not be 
enough to fully prove the metabolic prediction. Addi-
tional positive and negative controls are necessary, which 
would further improve the evidence of antagonistic meta-
bolic interaction predicted during this study. Further-
more, quantitative measurements of K. pneumoniae and 
Aspergillus growth are needed to validate the computa-
tional prediction of this study and warrants further study.

Our study does have some limitations. First, the meta-
bolic models used in the study are automated reconstruc-
tions, which despite gap-filling, could potentially contain 
gaps and blocked reactions and need to be curated [51]. 
Nevertheless, such automated reconstructions are being 
widely used in many studies as they serve as useful pre-
dictive tools and representations of the metabolism of 
microorganisms [52]. Secondly, wherever it is applicable, 
genomes generated from the cultured ISS microorgan-
isms were utilized. Conversely, when strains were not iso-
lated from the ISS environment, and thus, genomes were 
not available, the reference genomes of the correspond-
ing type strains were used. However, reference genomes 
provide a useful perspective of an organism’s metabolic 
capabilities and have also been used in many other stud-
ies that incorporate metabolic models [53, 54]. In the 
absence of exact estimates of environmental metabolites, 
we posited that the environment had at least the mini-
mal set of metabolites necessary for a given organism to 
survive, and also included additional cofactors and coen-
zymes. We assumed that each microorganism is capable 
of minimal independent growth and thus calculated the 
minimal medium required to support survival. It is pos-
sible that some of the interactions remain conserved, in 
richer media, although others may disappear, depending 
on the inherent metabolic capabilities of the organisms.

The graph-based approach provides a somewhat 
static snapshot of the metabolic interactions happen-
ing between the organisms. Indeed, the graph-theoretic 
approach does not account for differential importance 
of reactions, or for example, the increase in growth rate, 
that may result from potential interactions. This is cap-
tured by the complementary constraint-based mod-
eling approaches that were employed, and together, we 
believe, they provide a more complete picture of the 
possible interactions between the microbes. As previ-
ously highlighted in the ‘Methods’ section as well, there 
have been previous reports wherein a higher MSI does 
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point towards a possible higher biomass in the commu-
nity. As reported for Candida albicans, in addition to 
the genome-scale metabolic model, refining the model 
using phenotypic microarray and other wet-lab confir-
mation are needed [55]. Yet, it is highly useful and offers 
valuable insights into the potential microbial interactions 
in the community [30, 56] and well complements the 
constraint-based methods. Of course, it is important to 
emphasize that our computational methodology studies 
microbes through a metabolic lens only, and in reality, 
other interactions may be plausible. Nevertheless, meta-
bolic interactions have been previously shown [21] to be 
important drivers of community structure and microbial 
interactions. Importantly, this study offers a first glimpse 
into the metabolic interactions of the ISS microbiome, 
upon which several hypotheses can be formulated for 
future experimental design.

Conclusion
In summary, our analyses show the key role played by 
Klebsiella and other Enterobacteriaceae in mediating 
the metabolic interactions taking place between micro-
organisms in the ISS. Metabolic modeling, through a 
combination of graph-theoretic approaches and steady-
state constraint-based modeling, paints a more compre-
hensive picture of possible microbial interactions, which 
are as yet inscrutable to this extent by experimental 
approaches. Our results point towards key dependen-
cies of microorganisms in various locations on the ISS 
and can pave the way for possible interventions that may 
rely on targeted disinfection of surfaces aboard the ISS. 
Our approach also underscores the importance of com-
plementary modeling approaches in dissecting a fairly 
complex microbiome and understanding various possible 
interactions. Our methodology is fairly generic and can 
be readily extended to predict microbial interactions in 
other interesting milieu and generate testable hypotheses 
for wet lab experiments, as we have demonstrated in this 
study with Klebsiella and Aspergillus species.
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